GCSE 7+ Session 5 **Independent Practice Lines and Circles**

Revise, refresh, recall the core knowledge and skills:

Copy and complete this table, filling in the empty cells. The first row is an example. 1

Equation of line	<i>y</i> -intercept	gradient	<i>x</i> -intercept
y = 4x - 7	(0,-7)	4	$\left(1\frac{3}{4},0\right)$
5y = 2x - 4			
4y + x + 6 = 0			
	(0, -3)	2	
	(0,3)	0	
	(0,-4)	$\frac{2}{3}$	
	(0,6)		(2,0)
		$-\frac{4}{5}$	(-2,0)

- 2 Work out the equation of the lines joining
 - (0,3) and (6,1)a)
- b)
- (0,3) and (-6,-1) c) (6,3) and (6,1)
- 3 Work out the co-ordinate(s) of any point(s) of intersection of a)
 - the line y = 10 3x
 - the circle with centre (0,0) and radius $2\sqrt{5}$
 - Repeat, for the same circle but now with the line y = 10 2x. b) What do you notice?

Practice makes permanent: these questions will help you embed and make secure your factual knowledge, procedural fluency and conceptual understanding:

- Work out 4
- the co-ordinates of the vertices of a)
- b) the area of

the triangle formed by the lines 2y = x - 3, 2x + y = 1 and 3y + x = 8.

A line has gradient $-\frac{1}{2}$. (5, 2) is a point on the line. 5

Complete the coordinates of these points which are also on the same line:

- $(9, _{--})$ a)
- $(-4, __)$ b)
- $(_{-}, -2)$

- Work out the co-ordinate(s) of the point(s) of intersection of the quadratic curve $y = x^2 4x 2$ and the lines
 - a) y = -6
- b) y = 2x 11
 - c) 2y = x 8

Say whether each line is a chord or a tangent.

Productive struggle: these harder questions require deeper thinking.

- 7 Work out the area of the triangle with vertices (-2,0), (3,5) and (4,-2).
- 8 Work out the area of the quadrilateral formed by the lines:

$$2y = 3x + 10$$
, $2y = -3x - 2$, $2y = x - 2$, $2y = -x + 10$

The curve with equation $x^2 + xy + y^2 = 13$ is called an **ellipse**. Is either of the lines

b)
$$y = 2.5x + 13$$

a tangent to this ellipse?

The curve with equation $x^2 - y^2 = 12$ is called a **hyperbola**.

Work out the co-ordinate(s) of any point(s) of intersection of this hyperbola and each of the lines

a)
$$y = 2x - 6$$

b)
$$x = 2y + 8$$

c)
$$y = 3x - 6$$

d)
$$v = x - 6$$

Describe (in words) the geometrical relationship between each line and the hyperbola.

- 11 Do the two circles
 - one with equation $x^2 + y^2 = 36$
 - one with centre (6,8) and radius 4

intersect at two different points, touch at one point, or not intersect at all?