Starter Questions: Complete the square in each question to solve the given equation.

1.
$$x^2 + 6x + 8 = 0$$

2.
$$x^2 - 10x + 20 = 0$$

3.
$$x^2 + 8x + 9 = 0$$

4.
$$x = \frac{1}{x-6}$$

4.
$$x = \frac{1}{x-6}$$
5. $\frac{x-3}{4} = \frac{7}{x+1}$

6.
$$x^2 + 3x - 1 = 0$$

7.
$$2x^2 + 8x + 1 = 0$$

8.
$$x^4 - 12x^2 + 25 = 0$$

$$(x+1)^{2}+1=0$$

In $(x+3)^{2}+7$
 $x^{2}+6x+9+7$

$$(x+3)^{2} - 1 = 0$$

 $(x+3)^{2} = 1$
 $x+3 = 1$ or $x+3 = -1$
 $x=-2$ or $x=-4$

Extensions: our shared expectations

I will treat all other participants, students and teachers alike, with respect and with compassion.

I will, both during these sessions and afterwards, treat all participants equally regardless of their background or identity.

I will follow all instructions given to me to the best that I can.

I will not, either during these sessions or afterwards, bully, harass, intimidate or discriminate against any participant in these sessions.

I will not record or capture any video or images (e.g. screenshots) during these sessions.

From the warm up:

$$\frac{x-3}{4} = \frac{7}{x+1}$$

$$(\chi_{-3}\chi_{x+1}) = 28$$

 $\chi^2 - 3\chi_{x+1} = 28$
 $\chi^2 - 2\chi_{x+1} = 0$

$$(x-1)^{2}-32=0$$

 $(x-1)^{2}=32$

$$x-1 = \pm \sqrt{32}$$
 =) $x = |\pm \sqrt{32} = 1 \pm \sqrt{2}$

$$x^2 + 3x - 1 = 0$$

$$(x + \frac{3}{2})^{2} - \frac{13}{4} = 0$$

$$(x + \frac{3}{2})^{2} = \frac{13}{4}$$

$$(x + \frac{3}{2})^{2} = \frac{13}{4}$$

$$(x + \frac{3}{2})^{2} = \frac{13}{4}$$

$$x + \frac{3}{2} = \frac{1}{4} = \frac{13}{2}$$

$$x = -\frac{3}{2} + \frac{\sqrt{13}}{2} = \frac{-3 \pm \sqrt{13}}{2}$$

From the warm up:

$$2x^{2} + 8x + 1 = 0 \Rightarrow$$

$$2(x+2)^{2} - 7 = 0$$

$$2(x+2)^{2} = +$$

$$(x+2)^{2} = \frac{1}{2}$$

 $3c = -2 + \sqrt{\frac{2}{7}}$

$$x^{2} + 4x + \frac{1}{2} = 0$$

$$(x+2)^{2} - \frac{7}{2} = 0$$

$$x = -2 \frac{1}{2} = \frac{1}{2}$$

$$x^{4} - 12x^{2} + 25 = 0$$

$$(x^{2})^{2} - 12x^{2} + 25 = 0$$

$$(x^{$$

$$x^{4} - 12x^{2} + 25 = 0$$

$$x^{1} - (12)x + 5 = 0$$

What about this one?

$$x^2 + 4x + 5 = 0$$

$$(x+2)^2 = -1$$
No real solutions

What's going on geometrically?

$$y = x^{2} + 4x + 5$$

$$y = (x+1)^{2} + 1$$

$$y = (x+1)^{2} + 1$$

$$(3x) = (5,25)$$

$$(6,5)$$

$$y = x^{2} + 4x + 5$$

$$(3x) = x^{2} + 1$$

$$(3x) = x^{2} + 1$$

$$(3x) = x^{2} + 1$$

$$(4x) = x^{2} + 1$$

$$(5,25) = x^{2} + 1$$

$$(5,25) = x^{2} + 1$$

$$(6,5) = x^{2} + 1$$

$$(7,26) = x^{2} + 1$$

$$($$

$$x^{2}+4\pi t+5=0$$

$$(x+2)^{2}+1=0$$

$$x^{2}+4\pi t+5=0$$

$$x^{2}+4\pi t+5=0$$

$$x^{2}+4\pi t+5=0$$

$$x^{2}+4\pi t+5=(x+2)^{2}+1$$

When do you get what?

For what values of *k* can does the equation $x^2-6x+k=0$ have solutions?

$$\chi^{2} - 6x + k = 0$$

$$(x-3)^{2} - 9 + k = 0$$

$$(x-3)^{2} = 9 - k$$

$$\chi = 3$$
only priced $9 - k > 0$

$$9 > k$$
or $k \le 9$.

Can we generalise to all quadratics?

$$(x + \frac{1}{2})^{2} - \frac{1}{4} + q = 0$$

$$(x + \frac{1}{2})^{2} - \frac{1}{4} + q = 0$$

$$(x + \frac{1}{2})^{2} = \frac{1}{4} - q = \frac{1}{4} - \frac{1}{4} = \frac{1}{4} - \frac{1}$$

Can we generalise to all quadratics?

$$ax^2 + bx + c = 0$$

$$\chi^2 + \frac{c}{a} \times + \frac{c}{a} = 0$$

$$x^{2} + px + q = 0$$

=) $x = -p + \sqrt{r^{2} - 4q}$

$$= \frac{-\frac{b}{a} + \sqrt{\frac{b^2}{a^2} - \frac{b}{a}}}{2}$$

$$= \frac{1}{2} \left[-\frac{b}{a} + \left[\frac{b^2 - 4ac}{a^2} \right] \right] = \frac{1}{2} \left[-\frac{b}{a} + \frac{b^2 - 4ac}{a} \right]$$

$$=\frac{1}{2}\left[\frac{-b+\sqrt{b^2+rec}}{a}\right]=\frac{-b+\sqrt{b^2-4rac}}{2a}$$

QUADRATIC FORMULA!

Write $3x^2 + 9x + 10$ in the form $a(x + p)^2 + q$ What is the minimum value of the expression $3x^2 + 9x + 10$? What value of x would you choose to make $3x^2 + 9x + 10$ as small as possible?

$$3x^{2} + 9x + 10 = 3(x^{2} + 3x) + 10$$

$$= 3([x + \frac{3}{2}]^{2} - \frac{9}{4}) + 10$$

$$= 3(x + \frac{3}{2})^{2} - \frac{27}{4} + 10$$

$$= 3(x + \frac{3}{2})^{2} + \frac{13}{4}$$

$$= 3(x + \frac{3}{2})^{2} + \frac{13}{4}$$

$$\Rightarrow 0$$
Smaller while $x = -\frac{3}{2}$
at that the $x = -\frac{3}{2}$

H / - PY

Minima, maxima

How large is it possible to make $-6 + 5x - x^2$ by choosing x appropriately?

Minima, maxima, and more!

- 1. What are the minimum values of $2x^2 12x + 25$ and $2x^2 + 12x + 25$, and for what values of x are these achieved?
- 2. What are the minimum values of $2x^4 12x^2 + 25$ and $2x^4 12x^2 + 25$, and for what values of x are these achieved?
- 3. What is the maximum value of $2 + 24 \times 2^x 3 \times 2^{2x}$? For what value of x is this maximum value achieved?
- 4. Show that the equation $x^6 + x^2 6x + 10 = 0$ has no solutions
- 5. Find, with proof, all the integers for which $n^2 + 20n + 11$ is a perfect square.
- 6. Solve the equation $x^4 16x^3 + 70x^2 48x 135 = 0$ by writing the left hand side in the form (quadratic)² + c.
- 7. Show that the product of four consecutive integers can never be a perfect square.

Can we complete the cube????

- 1. Expand $(x + 2)^3$
- 2. Solve the equation $x^3 + 6x^2 + 12x + 9 = 0$
- 3. Solve the equation $x^3 + 6x^2 + 12x = 0$
- 4. Solve the equation $x^3 + 6x^2 + 12x + 20 = 0$
- 5. Expand $(x + a)^3$
- 6. Write down a cubic equation that can be solved by completing the cube
- 7. Write down a cubic equation that *can't* be solved by completing the cube

What's going on geometrically?

KING'S MATHS SCHOOL

A slice of mathematical history...

Cardano, Sciopione del Ferro and Tartaglia

If
$$x^3 + px + q = 0$$

$$(and 4p^3 + 27q^2 > 0)$$

Then a solution is
$$x = \left| \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} \right|$$
.

