

A puzzle to ponder

12 congruent quadrilaterals make a regular dodecagon.

What are the values of the interior angles of the quadrilateral?

KING'S

- **Do not ASK** anyone for **their** personal contact details: email, 'phone number, social media name, Instagram address etc.
- **Do not GIVE** anyone **your** personal contact details: email, 'phone number, social media name, Instagram address etc.
- If **anyone** asks you, in the Chat or directly, for your personal contact details, or
- If you read in the Chat, or if you overhear, **anyone** asking for or giving out personal contact details, or
- If you have any concerns about the welfare/wellbeing of any participant, including yourself, then you must as soon as possible
 - email the Head teacher dan.abramson@kcl.ac.uk or text him 07902 911144 and say what your concern is,
 - or email kclmsoutreach@kcl.ac.uk and ask Dan to contact you.

KING'S MATHS SCHOOL

• There are 120 students in Year 11. 40 students study Textiles. 60 students study Art. 50 students study neither Textiles nor Art.

All Year 11

KING'S MATHS SCHOOL

• There are 120 students in Year 11. 40 students study Textiles. 60 students study Art. 50 students study neither Textiles nor Art.

Two-way table

KING'S MATHS SCHOOL

• There are 120 students in Year 11. 40 students study Textiles. 60 students study Art. 50 students study neither Textiles nor Art.

W	hen you choose any	
st	udent at random,	
•	P(studies Art) =	

P(studies both) =

30	 1
) V>	4

	Art Yes	Art No	1
Textiles Yes	30	10	40
Textiles No	30	50	80
	60	60	120

Two-way table

KING'S MATHS SCHOOL

• There are 120 students in Year 11. 40 students study Textiles. 60 students study Art. 50 students study neither Textiles nor Art.

When you choose a **Textiles** student at random,

P(studies Art) =

P(studies both) =

GI.	30.
B	$\overline{}$
30	

Two-way table

- In Year 11 some students study History, some study Geography, and some study neither. When a student is chosen at random,
 - P(they study History) = $\frac{2}{3}$
 - P(they study Geography) = $\frac{3}{5}$
 - P(they study neither) = $\frac{1}{10}$
- Work out P(they study both)

- In Year 11 some students study History, some study Geography, and some study neither. When any student is chosen at random,
 - P(they study History) = $\frac{2}{3}$
 - P(they study Geography) = $\frac{3}{5}$
 - P(they study neither) = $\frac{1}{10}$
- Work out P(they study both)

	H Yes	H No	1
G Yes			
G No			

- In Year 11 some students study History, some study Geography, and some study neither. When any student is chosen at random,
 - P(they study History) = $\frac{2}{3}$
 - P(they study Geography) = $\frac{3}{5}$
 - P(they study neither) = $\frac{1}{10}$
- Work out P(they study both) = $\frac{11}{30}$

	,,	
Н	Н	
Yes	No	
11	7	3
30	30	- 5
3	1	2
$\overline{10}$	$\overline{10}$	- 5
2	1	1
3	3	1
	Yes $\frac{11}{30}$ $\frac{3}{3}$	Yes No $\frac{11}{30}$ $\frac{7}{30}$ $\frac{3}{10}$ $\frac{1}{10}$ 2 1

KING'S MATHS SCHOOL

- In Year 11 some students study History, some study Geography, and some study neither. When a **History** student is chosen at random,
 - P(they study both) =

	Н	Н	
	Yes	No	
G	11	7	3
Yes	30	30	- 5
G	3	1	2
No	10	$\overline{10}$	- 5
	$\frac{2}{3}$	1	1
	$\sqrt{\frac{3}{3}}$	3	1

- The probability that I have cereals for breakfast is 0.4, and porridge with probability 0.6. With cereals I drink either tea (probability 0.6) or orange juice (probability 0.4); with porridge these probabilities are 0.2 or 0.8.
- What is the (overall) probability that I drink tea? (1/2) = 0.36

- For breakfast I always have either cereals or porridge. With cereals I drink either tea (probability 0.6) or orange juice (probability 0.4); with porridge these probabilities are 0.2 or 0.8. I notice that in the long term I drink tea $\frac{1}{3}$ of the time.
- What is the long-term average ratio "cereals: porridge"?

I have cereals for breakfast with probability 0.4, and porridge with probability 0.6. With cereals I drink either tea (probability 0.6) or orange juice (probability 0.4); with porriage these probabilities are 0.2 or 0.8.

• We know that the (overall) probability I drink tea = 0.36

- I have cereals for breakfast with probability **0.4**, and porridge with probability 0.6. With cereals I drink either tea (probability 0.6) or orange juice (probability 0.4); with porridge these probabilities are 0.2 or 0.8.
- We know that the (overall) probability I drink tea = 0.36

	Cereals Yes	Cereals No	
Tea Yes	0.24	0.12	0.36
Tea No	0.16	0.48	0.64
	0.4	0.6	

• I have cereals for breakfast with probability 0.4, and porridge with probability 0.6. With cereals I drink either tea (probability 0.6) or orange juice (probability 0.4); with porridge these probabilities are 0.2 or 0.8.

We know that the (overall) probability I drink tea = 0.36

Imaginary trees

- There are three different flavours of packets of crisps in a box.
 There are 4 pickled onion packets, 5 salt & vinegar packets and 6 ready-salted packets.
- I take two(!) packets at random, one after the other.
- Work out the probability my TWO! packets are the same flavour.

$$= \frac{4}{15} \times \frac{3}{16} + \frac{5}{15} \times \frac{1}{10} + \frac{6}{15} \times \frac{5}{10}$$

$$= \frac{4}{15} \times \frac{3}{16} + \frac{5}{15} \times \frac{1}{10} + \frac{6}{15} \times \frac{5}{10}$$

$$= \frac{12 + 10 + 30}{200} = \frac{412 + 25}{200} = \frac{412 + 25}{200}$$

Imaginary trees

- There are 5 red pens, 3 blue pens and 2 green pens in a box.
- Mr Abramson takes a pen at random from the box and gives it to me. He then selects another pen from the box for himself.
- Work out the probability that he and I now have two differentcoloured pens.

Imaginary trees

- You and I play a game. Each 'round', P(you win) = 0.3 and P(we draw) = 0.1. The game stops when somebody wins.
- What is the probability that I win in the third round?

- You and I play a game. Each 'round', P(you win) = 0.3 and P(we draw) = 0.1. The game stops when somebody wins.
- What is the probability that I win eventually?

In praise of John Venn

