GCSE 7+ Session 3 Solutions Independent Practice Fluency with quadratic expressions

Revise, refresh, recall the core knowledge and skills:

When expanding products of two brackets you need to make sure that **every** term in the first bracket is multiplied by **every** term in the second bracket, before you simplify by collecting any like terms.

1)

a)
$$(2x + 1)(2x - 3)$$

$$\equiv (2x)^2 - 3(2x) + 1(2x) - 3$$

$$\equiv 4x^2 - 6x + 2x - 3 \equiv 4x^2 - 4x - 3$$

So,
$$(2x + 1)(2x - 3) \equiv 4x^2 - 4x - 3$$
.

b)
$$(2x+1)(2x-3)(x-2)$$

$$\equiv (4x^2 - 4x - 3)(x - 2)$$

This is the answer from 1a.

$$\equiv 4x^3 - 8x^2 - 4x^2 + 8x - 3x + 6$$

 $\equiv 4x^3 - 8x^2 - 4x^2 + 8x - 3x + 6$ Multiply each term in 1st bracket by each term in 2nd bracket.

$$\equiv 4x^3 - 12x^2 + 5x + 6$$

Simplify by collecting like terms.

a)
$$(3x - 4y)^2 \equiv (3x - 4y)(3x - 4y)$$

$$\equiv 9x^2 - 12xy - 12xy + 16y^2$$

$$\equiv 9x^2 - 24xy + 16y^2$$

b)
$$(3x + 4y)(3x - 4y)$$

$$\equiv 9x^2 - 12xy + 12xy - 16y^2$$

$$\equiv 9x^2 - 16v^2$$

3)

- a) You can factorise $x^2 + 3x 10$, by finding two numbers that:
 - Add to equal 3
 - Multiply to equal -10
 - 5 and -2 satisfy these.

So,
$$x^2 + 3x - 10 \equiv (x+5)(x-2)$$

- b) You can factorise $5x^2 x 6$ by finding two numbers that:
 - Add to equal −1
 - Multiply to equal -30-30 is the product of the coefficient of x^2 and the constant term.
 - 5 and -6 satisfy these.
 - So replace, -x with +5x 6x in the expression:

$$5x^2 - x - 6$$

$$\equiv 5x^2 + 5x - 6x - 6$$

$$\equiv 5x(x+1) - 6(x+1)$$

 $\equiv 5x(x+1) - 6(x+1)$ Factorise the first and second 'half' of the expression separately.

$$\equiv (5x-6)(x+1)$$

Factorise by (x + 1)

a)
$$x^2 - 25 \equiv (x+5)(x-5)$$

a) $x^2 - 25 \equiv (x+5)(x-5)$ This is the difference of two squares.

b)
$$2x^3 - 50x \equiv 2x(x^2 - 25)$$
 $2x$ is the HCF of $2x^3$ and $50x$.

$$\equiv 2x(x+5)(x-5)$$

 $\equiv 2x(x+5)(x-5)$ Again, the difference of two squares.

a)
$$\frac{x}{x^2 - 9x} \equiv \frac{x}{x(x - 9)} \equiv \frac{1}{x - 9}$$

First factorise numerator and denominator

b)
$$\frac{3x-9}{x^2-9} \equiv \frac{3(x-3)}{(x-3)(x+3)} \equiv \frac{3}{x+3}$$

First factorise numerator and denominator

c)
$$\frac{x^2+3x}{x^2-9} \equiv \frac{x(x+3)}{(x-3)(x+3)} \equiv \frac{x}{x-3}$$
 First **factorise** numerator and denominator

6) a)
$$x = 1 + \frac{56}{x}$$

Multiply each term by x

$$x^2 = x + 56$$

So
$$0 = x^2 - x - 56$$

So
$$0 = (x - 8)(x + 7)$$
.

So,
$$x = 8$$
 or $x = -7$

b)
$$(3x-1)(2x+1) = 20x + 19$$

So
$$6x^2 + 3x - 2x - 1 = 20x + 19$$

So
$$6x^2 + x - 1 = 20x + 19$$

So
$$6x^2 - 19x - 20 = 0$$

To factorise this quadratic, we can look for two numbers that:

- Add to equal -19
- Multiply to equal −120 -120 is the product of the coefficient of x^2 and the constant term.
- 5 and -24 satisfy these.
- Replace, -19x with +5x 24x in the expression:

$$6x^2 - 19x - 20$$
$$= 6x^2 - 24x + 5$$

$$= 6x^2 - 24x + 5x - 20$$

$$= 6x(x-4) + 5(x-4)$$

$$=(6x+5)(x-4)$$

$$(6x + 5)(x - 4) = 0$$

So,
$$x - 4 = 0$$
 so $x = 4$

or,
$$6x + 5 = 0$$
 so $x = -\frac{5}{6}$

Quadratic Formula

Solve $48x^2 + 22x - 15 = 0$ using the quadratic formula.

$$x = \frac{-22 \pm \sqrt{22^2 - 4(48)(-15)}}{2 \times 48} = \frac{-22 \pm \sqrt{3364}}{96} = \frac{-22 \pm 58}{96}$$

So,
$$x = \frac{-22+58}{96} = \frac{36}{96} = \frac{3}{8}$$

or
$$x = \frac{-22-58}{96} = \frac{-80}{96} = \frac{5}{6}$$

Completing the Square

Solve $x^2 + 4x - 4 = 0$ by completing the square.

$$0 = x^2 + 4x - 4$$

$$0 = (x+2)^2 - 8$$

So,
$$(x+2)^2 = 8$$

$$x + 2 = \pm \sqrt{8} = \pm 2\sqrt{2}$$

Remember both positive and negative square roots.

So
$$x = -2 \pm 2\sqrt{2}$$