GCSE 7+ Session 4 Independent Practice Quadratic graphs

Revise, refresh, recall the core knowledge and skills:

Copy and complete this table, filling in the empty cells. The first row is an example.

Equation of graph	<i>y</i> -intercept	Factorisation	x-intercept(s)	Complete the square	Vertex / turning pt
$y = x^2 - 6x + 8$	(0,8)	y = (x-2)(x-4)	(2,0) and (4,0)	$y = (x-3)^2 - 1$	(3,-1)
$y = x^2 - 6x + 5$		y = (x-1)(x-5)			
$y = x^2 + 4x - 12$					
		y = (x+3)(x-7)			
				$y = (x - 2)^2$	
$y = x^2 - 4$					

2 Now use the information in the table to sketch the graphs

a)
$$y = x^2 - 6x + 5$$

b)
$$y = x^2 - 4x + 4$$

3 Copy and complete this table, filling in the empty cells. The first row is an example.

Equation of graph	<i>y</i> -intercept	Factorisation	x-intercept(s)	Partial factorisation	Vertex / turning pt
$y = x^2 - 8x + 7$	(0,7)	y = (x-1)(x-7)	(1,0) and (7,0)	y = x(x - 8) + 7	(4, -9)
$y = x^2 - 2x - 35$		y = (x-7)(x+5)			
$y = x^2 - 3x - 10$					
				y = x(x+5) - 24	
				y = -x(x-4) + 5	

4 Now use the information in the table to sketch the graphs

a)
$$y = x^2 - 3x - 10$$

b)
$$y = 5 + 4x - x^2$$

Practice makes permanent: these questions will help you embed and make secure your factual knowledge, procedural fluency and conceptual understanding:

5 Copy and complete each table, filling in the empty cells. Then sketch each graph.

Equation of graph	<i>y</i> -intercept	Factorisation	x-intercept(s)	Partial factorisation	Vertex / turning pt
$y = 2x^2 + x - 15$					

Equation of graph	<i>y</i> -intercept	Factorisation	x-intercept(s)	Partial factorisation	Vertex / turning pt
$y = 6 + x - x^2$					

6 Copy each table, filling in the empty cells. Then sketch each graph.

Equation of graph	<i>y</i> -intercept	Partial factorisation	Vertex / turning pt
$y = x^2 - 3x + 6$			

Equation of graph	<i>y</i> -intercept	Partial factorisation	Vertex / turning pt
$y = 2x - 4 - x^2$			

- 7 What are the equations of each of these quadratic graphs?
 - a) vertex (turning point) at (2, -3) and y-intercept at (0, 1)
 - vertex (turning point) at (2, -6) and y-intercept at (0, 2)b)
 - vertex (turning point) at (2, -3) and y-intercept at (0, -7)c)

Productive struggle: these harder questions require deeper thinking.

- Factorise and also complete the square in $x^4 2x^2 3$ 8 a)
 - Hence sketch $y = x^4 2x^2 3$, giving the coordinates of the axis intercepts b) and any turning points.
 - Now factorise and also complete the square in $9^x 2 \times 3^x 3$ c)
 - Hence sketch $y = 9^x 2 \times 3^x 3$, giving the coordinates of the axis d) intercepts and any turning points.
- 9 For each of the following, first work out real numbers a, b and c that complete the square, and then state the minimum value obtained by each expression and the corresponding *x*-value:

a)
$$2x^2 + 4x - 3 \equiv a(x+b)^2 + c$$

$$2x^2 + 4x - 3 \equiv a(x+b)^2 + c$$
 b) $2x^2 + 6x - 3 \equiv (ax+b)^2 + c$

c)
$$4x^2 + 12x - 3 \equiv (ax + b)^2 + c$$

d)
$$4x^4 + 12x^2 - 3 \equiv (ax^2 + b)^2 + c$$

10 For each of the following, first complete the square and then state the minimum value obtained by each expression and the corresponding x, y and z-values:

a)
$$x^2 + y^2 + 6x - 10y + 50$$

$$x^2 + y^2 + 6x - 10y + 50$$
 b) $x^2 - 2xy + 2y^2 + 8y + 20$

c)
$$x^2 + 3y^2 + 4z^2 + 4xz + 12y$$